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A DISCUSSION OF
HALPHEN’'S METHOD FOR SECULAR PERTURBATIONS

AND ITS APPLICATION TO THE DETERMINATION OF LONG
RANGE EFFECTS IN THE MOTIONS OF CELESTIAL BODIES.
PART 1.

by
Peter Musen
Goddavd Space Flight Center

SUMMARY

The long range effects caused by the moon and the sun are of primary
importance in establishing the stability of highly eccentric satellite orbits.
At present no complete analytical theory exists which can treat such orbits.
It is shown here that Halphen's method of treating secular planetary effects
can, by means of step-by-step integration, also be used to determine long
range lunar effects in the motions of artificial satellites. Halphen's method
permits the numerical integration of long range lunar effects over aninterval
of a few tens of years. The long range solar effects can be treated by
averaging the disturbing function over the orbit of the satellite. Halphen's
method is applicable to the determination of long range (''secular') effects
in the motion of minor planets over the interval of hundreds of thousands of
years. We assume that no sharp commensurability between mean motions
of the disturbed and disturbing bodies does exist. A complete theory of
Halphen's method is presented in modern symbols. Goursat transformations
and a summability process are applied to speed the convergence of series
which appear in the theory.
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A DISCUSSION OF
HALPHEN'S METHOD FOR SECULAR PERTURBATIONS
AND ITS APPLICATION TO THE DETERMINATION OF LONG

RANGE EFFECTS IN THE MOTIONS OF CELESTIAL BODIES.
PART 1.

by
Peter Musen
Goddard Space Flight Center

INTRODUCTION

In treating the problem of the orbital stability of celestial bodies, the long range effects are of
primary importance; but no complete analytical theory considering these effects exists at present
for large values of the eccentricity, inclination, and semimajor axis. To obtain information about
the changes of its orbit over a long time interval, and hence information about the lifetime of, say,
an artificial satellite, we have to resort to numerical integration.

Methods based on the use of an unaveraged disturbing function, such as those of Cowell or Encke,
contain both the short and long period terms; and in the case of artificial satellites, they require that
the interval of integration be much less than the satellite's period, thus creating a large accumulation
of round-off errors. The main long range effects in the elements are produced by the long range
terms in the disturbing function and by their cross-actions. The short period terms can also produce
long range effects through their mutual cross-actions in higher order approximations, but such effects
are very small (Reference 1) and can be neglected over a very long time interval. For these
reasons, and to diminish the accumulation of round-off errors, it is necessary at the very be-
ginning to remove the short period terms from the disturbing function or from the components of the
disturbing force. The problem thus formulated does not differ from the problem of determining the
secular perturbation of planets and comets by means of numerical integration using the Gaussian
method (Reference 2). With the advent of modern electronic equipment, such a solution of the problem
has become possible.

The use of Halphen's form of the Gaussian theory (Reference 3) was suggested by the author as
a practical method for determining the long range effects through a step-by-step integration (Refer-
ence 4). Previously Halphen's method was not in use, probably because of several numerical ervors
which appear in the oviginal publication. They weve all corvected by Goviachev (Refevence 5), whose
name should be associated with the method as well; and in its present form the method should properly
be called the Halphen-Goriachev method. Some parts of Halphen's original exposition can easily be
recognized from the modern standpoint as an application of the calculus of dyadics (matrices) in a

. hidden form. In the present exposition we shall resort to vectors and matrices. The reason for this



is not merely the wish to modernize the notations, but because the application of vectors and matrices
removes all the ambiguities and difficulties connected with determiningdirection cosines when scalars
are used. The latter problems are, on some occasions, sources of errors in Halphen's original

presentation.

In Goviachev's work, all the formulas given in the final collection ave covvect; however, theve

are some misprints in the theovetical exposition. They ave corvrvected heve. The author has suggested
(Reference 4) the use of the Goursat transformation (Reference 6) and of the E-summability process

to speed the convergence of hypergeometric series which appear in the Halphen-Goriachev .method

and to facilitate the numerical computation.

A group working in celestial mechanics at Goddard Space Flight Center has applied Halphen's
method of secular perturbations to the motions of planets, comets, and artificial satellites. The
Halphen-Goriachev method was carefully compared with some other existing methods before it was
recommended for large scale use. At present, no exposition of Halphen's method exists in English.
In undertaking this exposition, the author was also motivated by the wish to present an interesting
and important theory to the community of English-speaking astronomers.

SECULAR DISTURBING FUNCTION

The following notation will be used to describe the motion of the disturbed body:
r the position vector with respect to the central body,
r® the unit vector in the direction of r,
P the unit vector directed from the central body toward the osculating perigee,
R the unit vector, normal to the osculating orbit plane, in the direction of angular momentum,
Q = RXP,
e the osculating eccentricity,
a the semimajor axis,
b = a y1-e? , the semiminor axis,
v the true anomaly,
E the eccentric anomaly,
g the mean anomaly.

Primed notations will be used to describe the motion of the disturbing body. The position vector
of the disturbing body relative to the disturbed body will be designated by s, where ¢ = ¢’ ~ r.



Let m' be the mass of the disturbing body, f be the gravitational constant, and m be the mass of
the disturbed body. The mass of the central body will be designated by M.

If the disturbing force

_ [P r'
F = fm <F—r,3> 1)

is developed into a double Fourier series with arguments g and g, then the constant term in the devel-
opment is the secular disturbing force [F] and we have

L W e A A T .
(F1 = 4’? . , ;5"73 dgdg’ - (2a)

Thus [F) is deduced from Equation 1 by applying a double process of averaging over the orbit of the
disturbing body and over the orbit of the disturbed body.

Writing the ""area integral" for the disturbing body in the form

P A
dg’ = L7p (2b)

we have

1 27 r' 1 27
Q?J - Y J vt = o
0

Thus the indirect part (- r’/r’3) of the disturbing force does not produce any secular effects and
Equation 2a takes the form

_ fm' 2m 2m P ,
Fl = L L o3 dede’ (3)

Let us first apply to F the process of averaging over the orbit of the disturbing body. This averaged
force will be designated by F,:

_ fm" 2 op
Fo, = = J i dg’ - : (4)
0

In the process of determining F, the position of the disturbing body is imagined to describe the com-
plete osculating ellipse. However, we are interested neither in short period terms nor in knowing at
what moment of time the disturbing body will occupy a particular position in its ellipse. This process
of averaging is evidently a purely geometrical one.

g rerer vee e (HEme o Illmlllllllll m o1 e ' Ema— ' e



The geometricallocus of vectors p is an elliptical cone with its apex in the disturbed body.
Taking Equation 2b into account, we can also write

N . W (L SR
R .

If we consider two neighboring position vectors p and p +dp with respect to the disturbed body m, then
r'2dv',2 represents the area of the elementary sector with the apex in the central body (Figurel).

Taking Equation 5 into account and setting

_ om'r'2dy’
dp = “orab’
we deduce
p
F, = 0 2 du-
0 § o3 (6)

This integral is taken along the ellipse of the disturbing body in the direction of the motion. Equation
6 represents the Gaussian result: F, is equal {o the aitraction of an elliptic ving ovev which the
mass is distributed proporvtionally to the avea of the sectov described by the vadius vector r'.

Let p, be the position vector of the central body relative to the disturbed body. Evidently

Pg = - T .

Also let

h = PO.R’

be the projection of p, on R’. We have

P = Pptr
dr’ = dp ,
and
Pop - P Xdp = pgy - (pOX dr’ +r’' X dr')
= pg - R'r'2dv’ = hr'?dv’

Figure 1—Area of the elementary sector.



or

2 ! = P—o ) P___x dP .
r’4dv = h

As a result of the last equation, Equation 5 becomes

_ fm’ pp X dp
Fo = 2na’b’h§ P * Po - (7)
Equation 7 introduces a dyadic
_ 1lpeppXdp
® = 7§ pe (®)

closely associated with the problem of determining secular perturbations.

Designating the unit vector in the direction of p by p? and substituting p = pp? into Equation 8, we
can reduce & to the simpler form

1
) :§§Popoxdpo. (9)

The peculiar characteristics of the dyadic ¢ are that its first scalar invariant and its vector are both
equal to zero.

We have
1
®, = Eépo-pOXdpo = 0 (10)
and
1
® = E§P°><(P°><dp°) :

Developing the double cross-product in the form

o, = %§(P°PO'dPO“PO'POdP°)
and taking
p% - dp® = 0.
PO PO = 1



into account, we deduce

@ = 'l§dpo = 9 -
X 2 (]_]_)

The condition that the vector of a dyadic equal zero is necessary and sufficient for the symmetry
of the dyadic. Consequently, ¢ is symmetrical and Equation7 can be written in the form

fm’® - pg fm'py - @
Fo = Zao5m 7 ma'b’' h (12)
or, taking
1
grad, (7 Po 'Q'Po) = P e
into account and putting
1 fm’
¥ = 2727 5"h Po " @ " py (13a)
we can write
F, = gradp0 ¥ - (13b)
By substituting
p = x1i+tyj+ zk ,
pXdp = (ydz-*zdy) i+ (zdx—xdz)j + (xdy‘-ydx) k.

into Equation 8, the following expressions for the components of & are obtained:

1§x!ydz—zdy! .
o, = 7 ;
2 03

u (14)
1y ( z dx - x dz ) .
(D22 - 2 [93 ! (15)
_1fz ( xdy -y dx! .
®;; T 72 o3 ’ (16)
_ _ 1 x!zdx—xdz _ 1 [y ydz—zdy! :
P, TPy T A 03 -2 o3 (17)



23 32

® = @ = _;_§YKXdY3'de’ - %§Z!zdx;xdz! :
P p

(18)

31 13

_ _ 1 z!ydz—zdy) 1 x!xdy—ydx .
Oy T Oy T 7§ pE =7 3 ’

(19)

p2 = x2 4+ y? + g2 .

The process of integration is performed in the direction of motion of the disturbing body.

We assume that the original system of coordinates and the system attached to the apex of the
cone are both right-handed systems. By rotating the system associated with the apex of the cone it
is always possible to reduce the equation of the cone to its normal form

x 2

)

z2

y2
+ T + = = 0 (203.)

and at the same time to cause all points of the ring to have positive z-coordinates. Also, without loss
of generality we can assume thatp, g, and r in Equation 20a satisfy the conditions p < q < 0 < r.

The direction of integration in Equations 14-19 is positive in the system defined by the unit vec-
tors P, Q', R'. However, it can be positive or negative in the system (i, j, k) of principal axes of the
cone. The direction of integration will be positive in both systems if R’ - k > 0 and it will be positive
in (P’, Q’,R’) and negative in (i, j, k) if R' -k < 0 .

Let

s = aP' + B8Q" + ¥R’ (20b)

be the position vector of the apex (of the disturbed body) with respect to the center of the ring.
We agreed to choose the direction of k in such a way that the z-coordinates of points of the portion of
the plane limited by the ring will be positive in the system (i, j, k); in other words we must have

- YR - k>0 .

From this we conclude that the direction of integration will be positive in both systems if ¥ < 0 andit
will be positive in the system (P‘, ', R’) and negative in (i, j, k) if ¥ > 0. A simple geometrical draw-
ing will confirm this fact. The direction of integration can always be taken as positive in the system
(i, j, k) if the factor

|4
vl sign 7y



is attached to the integral. We shall combine this factor with the factor fm'/7a’b’h and we shall post-
pone its introduction until the development is completed. In order to investigate the form of & with
respect to the system (i, j, k) let us choose as the contour of integration the ellipse

2 y2 22
+ — +T = 0
4 (21)

z = 1.

x
p

With the condition imposed by Equation 21 the preceding Equations 14-19 become

_ 1 | xdy _ 1 [ ydx _ 1| xdy - ydx
@y, 7 - 2§ P 8y T2 § 03 Py T F 2§ 03 ! (22)
o = + l§ xde o 1fax o _1fdy
12 2 pe 23 27 o3 3 27 53 (23)

We have, in the different quadrants of the ellipse given by Equations 21, the following:

x y dx dy -xdy +ydx xdy -y dx x dx
1 + + - + - - + -
II - + - - - - + +
III - - + - - - + -
1V + - + + - -~ + +

From this table and Equations 22, we see that

».<0, 9,<0, &.,>0

11 22 33
and, because of the symmetry of the contour of integration, each of the integrals in Equations 22 is
equal to four times the integral taken over the first quarter of the ellipse (Equations 21). Combining
in Equations 23 the elements which are symmetrical with respect to the x and y axes, we also con-

clude from the above table that

and ¢ takes its normal form

® = @,ii+®,jj+o,kk



S e e

in the system of the principal axes of the cone. (Vectors i, j, kare the unit vectors along the princi-
pal axes of the cone.) In other words, both the potential

fm' 1
Y = Za’b’h " 2P0 " P Py (13a)

and the equation of the cone can be reduced to their normal forms simultaneously.

In order to compute &,,, ®,, ®,, in the system defined by the principal axes, we can take the
curve defined by the equations

2 2

y? .z
gt T 0, xPryraa? =g (24)

x
P

as the integration contour. Taking the identities

(s=p) (q=r) + (s~q) (r=p) + (s-1) (p-q) = 0,

(25)
pls=p) (g-r) + qls—q) {r=p) + r{s~r) (p~q) = (p=-gq) (g-r) (r-p) ,

into account, we can write the equations of the curve defined by Equations 24 in the parametric form:

B pls - p)

x* = e p) (poq) (26)
2 - qls - q)

y {p=q) (q-r) ' (27)
r{s—r)

z? = (g-r r-p) (28)

where s is a variable parameter. Considering the inequalities

p <0, q<o0, r >0,
p—-qs0, q- 1 <0, r-p>0,
x?2 20, v22o0, z2 20,

p<s<q, (29)



and that the two inequalities
paqr > 0, (p~q) (g-1) (r=p) >0 (30)

are satisfied for p, q, and r.

Taking into account the symmetrical form with respect to the z-axis of the contour of integration
and the fact that o = 1 on this contour, we can write Equations 14-16 in the form:

d, 2nyz [d(logz) -d(logy)] s (31)
®,, = ZJ Xy z [d(log x) - dllog z)] R (32)
o, = 2J Xy z [d(logy) - dllog x)] . (33)

Now theintegral is taken along the first quadrant of the contour. On the first quadrant we have y = 0
for s = qand x = 0 for s = p; and the integration is performed in the positive direction from the point

to the point

We deduce from Equations 26-28:

1 ds

d{log x) = 2s-p"° (34)
1 ds

dllogy) = 335=9" (35)
1 ds

dllogz) = 55 =7° (36)

In the first quadrant of the contour, we have

xyz = - (p_q)'{’q‘{’r) r=p7 Y(s=p) (s-a) (s-1) - (37),

10



When Equations 34-37 are taken into consideration, Equations 31-33 become:

B P ypar ds
¢, = -J p-q) (r=p) }/(s—p) (s=q) (s=r) - Ts-q) (s=1J (38)
q
d = - P_@_r__‘/(s_ ) {s—q) (s=1) C—ds
22 . (p—a) (g-r) P q (s-r) (s—-p) (39)
o, = - [ ==L y(iTo) (559 (s - e
33 . (g-r) (r-p) p q (s=p) (s-q) (40)

The sign of the square root is chosen to be negative in order that the conditions ¢,, <0, ®,, <0,
®,, > 0 be satisfied. As before, the integration is performed in the positive direction along the first
quarter of the contour. Putting

1 1
e, = §(2r—p—q) = r—j(p+q+r) ' )
= % 2q-r-p) = q-3(ptatr) " (41)
e, 3 (2g-r-p a-3 (pta+r .
1 1
e, = 3 {2p~q-r) = p-glptqg+tr)
J

we have e +e,+e, = 0. From p £ q < r and Equations 41, we obtain

1

Let us now introduce in place of s a new independent variable u, by means of the equation

s = plu) +%(p+q+r) ) (42)
where plu) is the Weierstrass elliptic function satisfying the equation
p'2(u) = 4(plu)-e;) (plul-e,) (plul-e;) - (43)
Equations 41-43 now become

plu) — e

2
I
°
|

3 (44)
s-q = plu) —e,, (45)

11



s-r = plu)l -e , (46)
ds = pl (u)du N (47)

1
(s-p) {s~q) (s-r1) = ?p'z(u) .

The process of integration in Equations 38-40 is performed in the positive direction from s = ¢

to s = p. We have for s = g

plu) = e, ,

and for s = p

|
1]

plu)

Consequently in the first quarter of the contour the p-function is decreasing andp’ (u) < 0, or

1
Yis=p) (s-a) (s-r) = -5p' (u) (48)

Substituting Equations 44-48 into Equations 38-40, we deduce

1 ypqr p'? (u)du

®11 - 2 (‘P_q) (r—p) ) (p(U)—EZ) (p(u)—el) ) (49)
Y yoar p'? (u) du

<1)22 -2 (p-q) {gq-r) ° —(P(U)—e;;) (p(U)—el) ' (50)
1 yPG T p'?{u)du

L 2| (q-r) (r=-p) ° (p(u)—e3) (p(u)-ez) ’ (51)

where the integration is still performed in the positive direction over the first quarter of the con-
tour. Substituting the value of p’? (u) given by Equation 43, we obtain:

1 o

5@, —J Clg-r) [P(U)_ea] du (52a)
1 = {r-p) [plu) - d

7@, =] Clr-p) [plu e, ] du, (53a)
1 _

7, | Clp-a) [plul-e, Jdu, (54a)

12



where

c = -+ ypar
(p~q) (g—-r) (r-p)

and the path of integration is the same as for Equations 49-51. The complete contour is described if
the parameter u varies from a certain given value u = u, to u = u, + 4w, where 2« is the real period
of plu):

dx

f YAx-e,) (x-¢,) (x5

w

Taking into account the fact that in our case the integral over the first quarter is equal to one fourth
of the integral taken over the whole contour, we have from Equations 52a, 53a, and 54a:

u, 4w

w = j 0 C(q—r)[p(u)“es]du , (52b)
Yo
u0+4ru

20, = J Clr-p) [P(U)“ez] du , (53Db)
Yo
u0+4w

2¢33 = J C(p—q) [p(U)"el] du . (54b)
Yo

Taking into account the relations
pluy = = ¢ (),
{lutdw) = Zlu) = 47,
n = Hw) ,

between Weierstrass functions, we deduce from Equations 52b, 53b, and 54b:

1
2%, = ~Clag-r) (n+we3) , (55)
1
70, = ~Clr-p) (77+“’ez)’ (56)
1
7Oy = ~Clp-a) (ntwe,) . (57)

13



Eliminating e, e,, e, from the previous equations by means of Equations 41, we obtain:

b = ~ctan [ (oo 2255)].
Foo = - ctrmp [oe (am )]
%Cl)s_,‘ = -Clp-q) [n+<r—p—+%j—r)w:|'
Putting
M = Cllg-rlii+ (r-p)ljj+ (p-q)kk]
and
N = cllag=r)pii+ (r=plqjj+ (p-q rkk],

we have, from Equations 58-60,

1 tq+tr
5D T Mg+ Ne - M -

The next step will be to express @ in terms of the fundamental dyadic

8 = ITI . JJ N krk
and in terms of its invariants

k, = ptaqtr,

k, = pqtaqr +rp,

(58)

(59)

(60)

(61)

(62)

(63)

(65)

(66)

(67)

The dyadic @ is closely associated with the cone; its components in the inertial system and its in-
variants (in terms of these components) can be easily deduced. If the dyadics ¢,M, N are expressed
in terms of @ and its invariants, then the components of &, M and Nin the inertial system can be ob-
tained with no difficulty. Our final goal in this section will be to obtain an expression for ¢ and F; in

terms of invariants of the cone, and in the system defined by the unit vectors P’, Q' , K"

14



The dyadic M can be written in the form of a determinant with dyadical elements:

M = Clp q r
1 1 1
Putting
A = ®! = pii+qjjt+trkk,
we deduce from Equation 68 that
P q r A I C]
M-|1 1 1] = C|k2-2k, k, 3.
11 1 K
P q r L 3 K,
where 1is the idemfacfor
I = ii+jj+kk.
Taking into account that
P q T
(p-q) (g=1) (r-p)
lllz_pqqkrrp‘
3
111
P q r

and also that

rk,

(p-q) (gq~r) {r~-p)

(68)

(69)

(10)

15



we deduce from Equation 69 that

A I [C]
Vks )
Moo= - k2= .
' (p~a)? (qg=r)2 (r-p)? S ()
Ik, kg 3k, k,
However, it follows from Equation 41 that
e; ~ e, = p-4q,
e, T e, = r-p,
e, T e, = q-rT,
and thus Equation 71 becomes
- A I @
}/k3 ,
M o= - T kZ2-2k k .
(el—ez)2 (02~93)2 (e3~el)2 172k 1 3 (72)
k, k, 3k, k,

The expression (e, ~e,)? (e,~e;)? (e;~e,)? is the discriminant of the equation

4 (x-e)) (x-e,) (x—e;) = 4x3 -g,x-g, = 0,
where
-g, 4-(elez+0263+9301),
2, = ‘e e e,

and g, and g, are expressible as invariants of the dyadic .

We know, from either the theory of elliptic functions or the theory of equations, that

1
(p-ql2 (g-r)2 {r~-p)? = (e1~e2)2 (ez—e3)2 (e3—el)2 = 1580 (73)

16



where
A = gl-27g7. (74)

It follows from Equation 72, by taking the form of the discriminant (Equation 73) into consideration,
that

*(kPk,m2k2 -3k, k) I (75)

+2(3k,-k2)k, O .

Thus the dyadic M is expressible as a linear combination of dyadics A = !, I, ande®. The left side
of Equation 75a will be designated by uin accordance with Halphen's notations:

A
ST (75D)

The dyadic N (Equation 62), like M, can also be written in the form of a determinant with dyadical
elements in the first row. From Equation 62 we have

N —
T - P q r ’ (76)
1 1 1
We deduce from Equation 76 that
M
1 1 1 A I el
N 1 1 1 _
| 7 T T | Tk 3 0 (77)
q-r r-p p-q ﬁ (p=-q) {q—r) (r—-p)
) q T 3 k, k,
and from Equations 73 and 75b we obtain
Mo 16 Yk, " “
c - i) C (p=q) (g-r) (r=p] ~ (78)

17



The value of the determinant in the left side of Equation 77 is

2
par [(P2+q2+f2) - (Pq+qr+’p)]

2
= pqr'[(p**q+r)2 - 3(pq+qr+rp)]

2(k12 - 3k2)

ks

as can be shown very easily. Substituting the above value into Equation 77 and taking Equations 73
and 78 into account, we have

A I 7
2(k12—31‘2) N _ 1
k, "C T (p-q) {g-r) (r-p) L 3 0 ' (79)
5 S 1 s
k, 16 k,
By taking 1/C in the form (from Equations 70 and 73)
Lr_ 1., &
€ 16 (p-gq) (q=r) (r=-p) VI,
we finally obtain from Equation 79
SEL VI - -l:—lA(k I—3A)+(kk~9k);;]. (80)
16 Yk, 2(k 2 ~ 3k,) 16 1 172 73

In proving Equations 75a and 80 we followed Halphen's reasoning closely, using dyadics instead of
quadratic forms. We have shown that the dyadic N, like M, is a linear combination of three fundamental
dyadics (A, I, ®) with the coefficients dependent upon the invariants of .

In our proof we used the system of principal axes of the cone, but the use of dyadics leads im-
mediately to the conclusion that the properties of ¥ and N expressed by means of Equations 75a and 80
exist in any system of coordinates.

Equations 75a and 80 can be written in the form:

16 vk,
M= — [(9k3—k1k2)A+(k12k2—2k22—3k1k3)I

+ 2%k, (3k,~k?) @] , 81)
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. 1

N = m?) [(k11—3/\)ﬂ; + (1<1kz"9k3) M] , (82)
where, as before,

A

1% (el—e2)2 (ez_ea)z (e3—el)2

1
= Tfi‘(g23~27 g32)

Now, the discriminant of any cubic equation of the form

x3+alx2+azx+a3 = 0
can be written as
3122122 - 4313 a; *+ 18a,a,a; - 4323 - 27332
For the equation
-k, x?+k,x -k, = 0,

whose roots are the reciprocals of the characteristic roots l/p, 1/q, 1/r, for the cone, we deduce that

— = P22 2 . ¢ - 3 _ L2
16 }‘1 |\2 41\13 k3 + 18k1 k2l\3 4k2 27}\3 (83)

In addition, from Equations 41 and 65-67, we have

|
N
ra
~

I
—
©

1
G =
~
-
S
T
0

I
w|
=~
S’
+
—
Kel

!
(Alli—l
=
-
S——”
P
o

1
Wl
-
falps
+
T
]

|
wl =
-
——
—
o]

|
wlu
=~
-
——

~ze = (300) (B -a) (g -e)

and, after some transformations,
g, = 3 (% —3k2) ’ (84)
—_ 4 3
g3 ~ E(2k1—9k1k2+27k3)' (85)
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The next step will be to obtain an expression for ¢ in terms of the invariants of the cone.

We deduce from Equations 63, 82, 84 and 85 that

1 3 & 2 Tk,
"2(1) = M T)“?gw tzow ?(k11“3/\)' (86)

A second form of Equation 86 that will be useful in further exposition is obtained by eliminatingM in
favor of u:

1 B 16u vk, 3 B;
7 7 - —A—<ﬂ*7g—2‘“>
2 ’Ea
+§ ;(k11—3A)w:|' (87)

At this point it will be convenient to attach to ¢ the factor

fm’ ||
“7a' b hy

which was purposely omitted throughout the exposition starting from Equation 22. Taking (Equa-
tion 20b)

h = PO'R' = -s R = ~(aP' +80Q"+yR") - R = -y

into account and defining

. 16 (3 B3
A = A2 g, @Tmny:’ (88)
2w
B = 7, (89)
we obtain from Equation 87:
_ 2 fﬁ[ 1 90
© = STor LeA- 3B (K, 1-3A)] (90)

Now we can express the disturbing force F,, averaged over the orbit of the disturbing body, by

the formula
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or

Fb, = -¢-r, (91)
where ¢ is now given by Equation 90.

In a following chapter we shall derive expressions for the coefficients A and B in terms of invari-
ants of 0.

ON THE FORM OF THE BASIC DYADIC ¢
IN TERMS OF INVARIANTS OF o

Let us choose the system (P’,Q', R’), with origin in the center of the ring, as a basic reference
system. Let (a,8, v), as before, be the coordinates of the apex of the cone, {(s,n, ¢) be the co-
ordinates of a point of the cone and (xo, Yoo 0) be the coordinates of the intersection of the generating
line, passing through (& », { ), with the ring. Thus we have

{-a _ nm=B _ L-v
&7 X By, Y (92)
and
X Vg _
alZ + b,z - 1 * (93)

If the origin of the coordinates is transferred to the apex, then the coordinates of a point of the
cone become

and from Equation 92 we have

_az — yx _
X0 7 z and y, =

Bz = yy

Substituting these values into Equation 93, we obtain the equation of the cone in the form

2?2 laz-yx)?  (Bz-yy)?

')/2 a'2,),2 b'2')/2

= 0. (94)

The divisor 2 is introduced for reasons of homogeneity and the condition
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requires an arrangement of signs as in Equation 94. Therefore this equation can also be written in

the form:
w0 -w = 0,
where
wo = xP'+yQ ¢ zR’ (95)
and
_ R'R' {aR' —yP') (aR' -yP')  (BR -y 0') (BR -y Q")
e = 2 12 .2 - 2.2 ' (96)
Y a ' “y b'*y
By again introducing s, the position vector of the apex with respect to the center of the ring
s 7 aP’ o+ sy, (20D)
we can write the dyadic ® (Equation 96) in a contracted form:
o SX‘)IQIXS+SXP’P’XS+R’“I,
7 b7 i (97)
which is more convenient for the computation of invariants.
The form of ® which we have used previously was
Cii jj o AWk
@ = % *tq T (64)

and it referred to the principal axis of the cone.

In the process of computing the invariants we will follow the classical Gibbs notations (Refer-

ence 7) closely.

If a dyadic X is given in a reduced form,
X = al +bm+en, (98)

then the adjoined dyadic X, and the invariants X_, (X,) , X; are given by the formulas (Reference 7T):

X2 = b XemXnteXanXl+aX blXm, (99)
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, (100)
(Xz)!:ch-an+ch'nXl+aXb°le, (101)
X, = (a-bXe){l+mXn). (102)
The reciprocal dyadic is given by the formula:
x2
Xt o= X, (103)
Substituting into Equations 99-103 first
s X Q' s AP _ I
S A M T mE T
1 = 'Xs, m = P'as, n = R,
and then
1 = i, m o=, n = k.,

we compute 0,0, (0O ,0,, and ! using both forms of ® as given by Equations 97 and 64, and com-
2 s 2 . 3 g

pare the results. After the substitution and some easy vectorial transformations based on

aX(bXe) = ba+:c-ca-b
(104)
(a Xb) - (e Xd) = a-cb--d-a--db- ¢
are performed, we obtain:
M ' 0’y P
o :__lP_),)Jr ss :11+J_l+klc,
2 b'242  g'242 a'2p'2 42 r rp  pq
= ——1 I ! ! 1 1 i kz
8, = a'2h’242 [a 2b'2-a?b2-B2a'2 -2 (a'2 4 b 2)] = k.
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=

(®2)s - briyz'_a:;yz a:i;i?;;zz -Ei' (107)
1 1
% T Sipz,r T (108)
A= 8! = ss-a'2P'P -b'2¢QQ . (109)
From Equations 106-108 we deduce expressions for the invariants k, k, s kyt
ky = a2+ 2492 - (a?4bp02) (110)
k, = a'2b’2 - a2b'? - 22’2 - y2(a'2+Db'2) | (111)
ky = a'?b'Zy? . (112)
The value {73' in Equation 90 is positive. Consequently, from Equation 112,
Yk, = a'b’ |y
Substituting this value into Equation 90, we obtain a final form of ¢:
® = 2fm’ (AutBv) , (113)
where
v A“%kll (114a)

The expression (Equation 91) for the disturbing force averaged over the orbit of the disturbing body

now becomes

Fo = = 2fm" (Au-r+Bv-r) .

Using Equation 96 we can write @ in the form

k;® = —b'2yZ PP

- a2y @y
+b’2a’y nlpl +alz,y/3 Rlo/

24
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+b'2ay PR

ta'?By Q'R (115)

+ (a'zb’2~a2b'2._/82312)RIRI .



In a similar way, from Equation 109 we obtain

A= (az-a’2) prpr +af P'Q" + ay P'R’
tap QP +(A-b'2) Q'Q + By Q'R (116)
+ ay R’ P’ +yB R Q' + y2 R'R';

and in addition we have

I = P'P' + 0: QI + R'R'. (117)

Now, substituting the results given by Equations 115-117 into 756a and 114a, we obtain x and » in
the form of Halphen's matrices

N I ST PR I (118)

v = v v v ’ (119)

where
py 7 (9kymk k) (a?-at?) 4k (K k,-3k,) - 22+ %gz b'2y? ,
3
Hay = (9k3_k1k2) (ﬁz_b'2)+k1 <]<11"2"3’I“3)—21‘22Jr 7 By a'?y?,
py = (kg mkk,) vk (kypkym3ky) =~ 27 + %g2 (a2b'2+523'2_a’2b’2) J
(120)

B = By < (9k3—klk2) s,

—_ 3 I’
My T Hag T (9k3—k1k2)ﬁy~7g2a2,8y.

- _ 3 .
Hay T Hi3 T (gks—k1k2)7a—7g2b27a;
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and

11

22

33

12
23

31

The decomposition of ¢ in the system

D
1)
Putting
x = r P,
we obtain a decomposition of -F:
= Fy
- Fop
- F

1
= 42 - =
Y 3 1\1 ,
= vy T B
= vy, T By,

(P, Q', R') takes the form

= 2fm’ (Ap.ij +Bvij).

o

N

X TP,y o,

Dy X T Oy y T O,y

N

= 0 x+<I)32y+<I>332.

31

(121)

(122)

(123)

(124)

(125)

(126)

The system of Equations 124-126 gives Halphen's decomposition of F, along the axes (P’,Q',R’).
Here, however, the author would like to suggest a slightly different system of formulas, which might
be simpler to program for computers. This system is based on decompositions of ® and A as given

by Equations 97 and 109. Putting

(91) = kP 0,
(02) = k0" -0,
(93) =k, R" -0 -r,

26
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(A;) = @ - A, (128)
() = ® e

x = P’ r,

y = r,

z = R’ r,

and taking the equations
s = r+taveP,
(129)

s Xr = a'e' P Xr

into account, we deduce from Equations 97 and 109:

(8,) = a'b'?e’y?,

(0,) = o, (130)
(0) = a'B'2y (a’'=ae'),

(A)) = as -+ x=-a'%x,

(Ap) = Bs - r-b'?y, (131)
(A;) = 7s - x

mo= [ (A) oy (0,)] c kg (kykym3ky) -2k} = | my | (132)
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— 1 | - T
(Al) T3k x ny
_ 1 _
no= | (A) -~ 3k oy T | nyf (133)
1
(/\3) - 3k1 z n
L I

By taking Equations 75a, 75b and 114a into account, the expressions for the components F,, , F,,, Fos

take a more concise form:

Fop = -~ 2fm' (Am +Bn}) ,
Foo = - 2 fm’ (Am2+Bn2) , (134)
Fo3 = — 2fm' (Am; +Bny) .

EXPRESSIONS FOR THE COEFFICIENTS A AND B IN TERMS
OF INVARIANTS OF 6

In this chapter we present Halphen's theory concerning coefficients A and B with some modifica-
tions which speed up convergence of the series. Our final goal will be to express the coefficients A
and B (as given by Equations 88 and89) in terms of invariantsk , k,,k, of ®. In order to do so we
have to make use of some theorems from the theory of the Weierstrass elliptic functions. We have the

basic relations

p'2(u) = 4p3(u) - g,plu) - gy, (135a)
" = 2 1
p"{u} = 6p?{u) - 5g,; (135h)

and we also make use of the equation

d logolu) d logolu) 3 1 3d2%2o(u) 1
g 9g, + 18g, e, 2olu]l 4.2 tgeyu’ (136)
(Reference 8, p. 393).
From the defining equation for the {-function,
1 dolu) _
o(u} du = ¢lu), (137)
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we deduce that

o el L L (2l (138)
but
' (u) = = plu), (139)
and Equation 138 can be written in the form:
oy ‘9;(“;(2“) = () - plu) . (140)
Substituting this result into Equation 136 we obtain
g22———a hgg;am) + 18g, 9 log olu) lcggg;(U) = %Cz(u) "%p(u) +'é—g2u2 . (141)

Introducing Halphen's linear differential operator D, defined by the equation

_ 3 2 3
D = 12g, EX 3 et ERN J (142)
we can write Equation 141 in the form:
1
Dlogolu) = (% (u) - plu) + 753 g, u? .

(143)

Oifferentiating this result twice with respect to u and taking the defining Equations 137 and 139 into
iccount, we deduce that

1
DZlu) = - 2¢(u) plul = p' (u) + gg,u (144)

1
Dplu) 8 2p'(u) Lu) = 2p2{u) + p” (u) -5 g, - (145)

raking Equation 135b into account, we can reduce the last result to

2
Dplul = 2p' (u) Llu) + 4p2(u) ~34g, . (146)
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Differentiating Equation 146 with respect to u we obtain

Dp’ (u) = 6plu) p' (u) + 2p” {u) {lu).

If we have a function F of g, , g, of the form

wo= F(v, 2, gs) '

and if v = ¢(g,, g,) is also a function of ¢,, g, , then

. 9F
Dw = 5o Dv + DF .

In forming GF on the right side of the last equation we consider v as a constant.

Designating, as before, the half of the real period by «, we have

P (w gy 8) = 0, = (e g, gy) -

Puttingv = w,w = 0, F = p'(w, g,, g;) into Equation 148, we obtain

P" (@ g, g5) Do # Dp' el = 0

and from the last equation it follows, by taking Equations 147 and 149 into account, that

p" (w, g, 8;) Do+ 20p" (w, gy, 85) = O
or

Do = -~ 27 .

Settingw = 7, F = {(v, g,, g,), v = w in Equation 148, we have
ODn = {'(w gy g;) Do+ D(w, g, &) -

From Equation 144 it follows, by taking Equation 149 into account, that

1
DL (w, u,, g,) = = 2n1p(w, gy 8y) * G 8@ -

(147)

(148)

(149)

(150a’

(150D

Substituting this into Equation 150b and taking Equations 139 and 150a into consideration we obtain

1

Dn = + 2np(w, 8, 8;) ~ 20p (@ gy B3) * F 8
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or, finally

Dn = +%g2w- (151)
Writing the formula
p(},u—;, ng,, u g3> pp(u, g, g;5)
in the form
p(ru, v % g,, v 0 g,) = ¥ 2Ip(u, g, &),

we conclude that if the argument u is considered to be of the first dimension, then g, is of the minus
fourth dimension and g, is of the minus sixth dimension. The discriminant A = g -27¢glis of the
minus twelfth dimension and the absolute invariant J = g23/ A is of zero dimension. The real semi-
period w,being an argument, can be considered of the first dimension and, consequently,x = wA!/12 ig of
zero dimension. The function p(u, 2y g,) is of the minus second dimension and then L(u, 2,5 3 ),
because of the equation (' (u) =-plu}, must be of the minus first dimension; in particular, n = {(u)
is also of the minus first dimension and, consequently, y' = nA~1/12 ig of zero dimension. As a conse-
quence x and y’ can be treated as functions of only the absolute invariant J. By applying the operator
D to A and J, we deduce that

DA = 0,
(152)

36ge,
DY A .

Eliminating g, and g, by means of the equations J = g,/Aand J-1= 27¢g2/ A, from Equation 152, we
obtain

D] = 4 y3Al/6 J2/3 (j-1)1/2 (153)

We have, taking Equations 152 and 153 into account:
D — ..(E(_ - g.’i 1/6 2/3 — )1/2 . |
x = g = 47’§de J (J-1 ; (154)
Dx = AlV12pg | (155)
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By substituting Dw = ~ 27 = - 241712y’ (Equation 150a and definition of y') into Equation 155 and com-
paring the result thus obtained with the result given by Equation 154, we have

dx 1
_— = e — —- -1/2 -2/3 :
dJ 2y3 JTUTEITEE (156)

Taking Equation 151 into account we deduce that

1
Dy’ = D (na1/12) = ATI/2 D) =z, ATV (157)

Similarly to Equation 154, we have for y’
! = iy_t = _d_)i 1/6 12/3 - 1/2
Dy a7 DI 4 Y3 ay AT (7~1) . (158)
Comparing the two values of Dy’, as given by Equations 157 and 158, we obtain

dy' _ 1
dJ 24 V3

~1/4 =2/ - -
A~1 g, @] 2/3 (J 1) i/2 (159)

Eliminating g, and » from the last equation in favor of J, A and x by means of the relations
g2 = A1/3 J'l/3, w = xA"l/n, we obtain

dy’

a— 1 — -
ﬁ = 24}/3 (J-l) 1/2] i/3 x . (160)
If we put
1 -1/2 y~2/3 ' -]
Zyz U =y (161)
then Equation 156 takes the form
dx _
dqg -~ ~VY- (162)

Eliminating y' from Equation 160 by means of the defining Equation 161, we deduce that

d
H4TIT-1) gF + 24y (7]~4) - x = 0. (163)
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Eliminating y by means of Equation 162, we now have

d? x 2 7 dx 1
Jjaa-n sz"(E’EJ)?_f"mx = 0. (164)

The last equation has the form of the hypergeometric equation

x(1-x) y” +|:’y-(a+ﬁ+ 1) x] y' = afy = 0

with « = 8 = 1/12 and ¥ = 2/3. Differentiating Equation 163 and again taking Equation 162 into ac-
count, we obtain a hypergeometric equation for y:

dy " 18y - 0 (165)

with a = 8 = 13/12 and v = 5/3.

For the purpose of determining the coefficients A and B (as given by Equations 88 and 89) it will
be convenient to use

X = agy)/t (166)
and
Y = ng2-1/4 (167)

rather than x and y. The next problem will be to determine hypergeometric equations of which X and
Y are solutions.

Eliminatingw, n, g, from Equations 166 and 167 in favor ofx,y, J by using
x = aAl/lZ, yl = nA‘l/m, g2 = J’l/3 A1/3

and Equation 161, we obtain

»
1l

joizy, (168)

<
1l

1
_— - ~-1/2 y-7/12
AR A AR S (169)
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Also, we introduce

¢ 773 (170)

as a new independent variable instead of J.

The transformation of Equation 164 by the introduction of X instead of x and of ¢ instead of J is
a transformation of the form y = x %z, u = (x - 1)/x applied to the hypergeometric equation

x{1-x) y" +[y-(a+,8+1) x]y' ~afy = 0.

We have x = 1/(1-u); and by substituting

y = (1-u)®* z ,
d
% = (1-u)%*? 57— - g(1~-u)e*l 2 |
d? 22 d
dx}; = (1-u)ett 7 = (2a+2) (1-u)‘1+3—d%+(a2+a)(1—u)a+2z,

into the original equation, we deduce a hypergeometric equation

dz _
ull-u) du? +[71— (a1+51+1) UJHLT“ a; Bz =0

with

a, = a,
By T a=-y+1,
Y, T oetB-ytl.

Inour casea = 8 = 1/12, ¥ = 2/3, and a, = /12, B8, = 5/12, v, = 1/2, and the hypergeometric equa-
tion of which X is an integral is

1 3 dX 5
+(?'7§>¥“ﬁx = 0. (171)
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A hypergeometric equation

x(1=-%) y" +[y-(a+8+1) x)y' ~afy = 0
has the integrals
v, = Fla, 8, 7 x), 172)
y, = x!"" Fla=-y+1, B-y+1, 2=y, x) , (173)
y; = Fla, B, a+B-y+1, 1-x) , (174)
ve = (1=-x)7"2"F Rly-g, y~a, y~a=-B+1, 1~x) . (175)

If v = a+f, then the two last integrals coincide and an integral of the form

s = Fla, 8, 1, 1~-x) log{l-x) + Z{1~-x) (176)

will appear instead of the integral given by Equation 175. The function z{1-x) is developable into a
Taylor series in powers of 1- x.

For Equation 171 the general integral can be written in the form

1 5 1 7 11 3
x = w(fz 12 5 ¢)+n2r(G 53 ¢) (177)
or in the form
1 5 15
X = ch(ﬁ- VIR 1-§)+ c, [F(ﬁ iz L 1—§>1og(1—§) + Z(1- 5)}- (178)

where ¢ = 1 is a critical logarithmic point.

However, for ¢ = 1we have, from Equation 170, J = = and, consequently, A = 0. Thus, the case
¢ = 1 corresponds to the case of a double root of the equation 4x3 - g,x—g, = 0; and these roots
become

V3

e, T tyYy3 (179)
1 /B

ez T & T "2V3 (180)
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" Substituting these roots into the formula for the real semi-period

e T
) - - e
v e17e3)o vV 1-k?sin?¢ 1 3
we obtain
_ v
Y |
}‘12g2
or
X = 4 = 4= f =1
“VE T Gy freT o (181)

Thus the value ¢ = 1 cannot be a logarithmic singularity of X and, consequently, the value of C, in
Equation 178 must be zero. The integral of Equation 171, which is of interest to us can be written
either in the form given by Equation 177 or in the form

1 5
X = CIF(ﬁ’Tz’ L 1"5>' (182)

Putting ¢ = 1 and taking Equation 181 into account, we obtain

7

F
12

) 1 s
Ve - ygrlm ) (183)

A linear relation must exist between the two expressions for X (as givenby Equation 177 and 183),
which will help us to determine the values of the constantsM andN. We can use the following relation

between three solutions of the hypergeometric equation:

Mat+tB-y+1) T (1~%)
r(a—7+1) r (,B—')""l) F(av /Bv Y x)

Fla, B8, a+8~-y+1, 1-x)

Cla+B8+1-9) T (y=1) _
+ ﬁr(a)yr(,@) z X177 Fla=y+1, B=y+1, 2-%, x) » (184)

which is the form given by Erdély et al. (Reference 9). By inserting into

Mz TM1-2) = Gaa
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first, z = v and thenz = ¥~ 1, we obtain

Tiy) T{1-9) .

Ply-1) = ==

Now the relation of Equation 184 can be written:

L Mla+g=y+1) T{1-9)

Fla, 8, a+B8-vy+1, 1-x) Ma-y+1) TA-y+1) Fla, B8, v, x)

_Mla+B+1-v) Tly) M1-y)

I(2->) I{a) T(A) X177 Fla=y+1, B=y+1, 2-v, x) .

Settinga = 1/12,8 = 5/12, v = 1/2, x = ¢ in Equation 185, we obtain

1
p(L 5, 1, M (Ll 5 1,
(12 12 ) r(1l2>r'i‘2) (12 12° 2 g)
rz (3) o 7 1 3
FrE (R ) T
Putting firstn = 3, z = -1/12, and then n = 3, z = - 1/4 into the Gaussian formula
(gmyamtyz oot Plza) T (ze1-2) - 1 (ze1-222)
/a = T Mnz+1) ’
we obtain
uy zy (&)
Iﬂ<12) F(u) = ‘;/—31“(41)

We also have

(185)

(186)
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and

—

@ -4

N

() e
g - OGS b A 22T E B e

Multiplying both sides of the last equation by n/4 12 and taking Equation 183 into account we have

x :ﬁr&)F(L,i,l,é) _ﬂﬁ@F(L,g,z,g). 188
2"71“;) 12°12° 2 ,fgr&) 12°' 122 (188)

In order to simplify the last equation we shall make use of the B-function:

1
Blu, v} = 2.[ x2u"1 (l-xz)"-1 dx , (189)
0

and

_ T Tv)
B(u, v} = Mu+tv) ° (190)

Setting, in the last equations, first

1 1
u - F v = 7
and then
- 3 - 1
u - 41 v = 2,
we have

w
Py
B
(ST
—

n
[\
© L
»
]
-
~
N
—_——
-
1
n
~—
1
-
~
N
n
I
-
RN
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Taking into account
and

and introducing a new variable y = yx instead of x, we have
) 1
dx
= 2 N
1~ x*
0

ﬁr

N

Tl
2

(

-
Hw
S——|

-
N
ENPN ISR
| —
n
—
-
=
I N
Q.
% [|%
£

And Equation 188 takes the form

_ 1 5 1 3
Xﬁ—“lF(Tz'ﬁ’i's“)"Bl §F(12"17’T'5)’

where

= 1.311028777146 - - -

>
i

J~1 dx

! o Y1 ~ x*
Jl—ﬂ = 0.599070117367

! o Y1 - x* ’

Halphen used ¥(¢) = Xy2 instead of X. From Equation 191 we have

wo - anr (& kod)-n e B 20

(191)

(192)
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and from Equation 183

1 5
pig) = ch(ﬁ' i3 1, 1- £) (193)

where C, = 7/§ 3. Goriachev used both forms of ¥(¢£).

Equation 192 is convenient if £ < 1/2 and Equation 193 is preferable if¢ > 1/2. However,
remembering that a hypergeometric series converges rather slowly, we shall find it more convenient
to transform Equation 193 to a fast convergent form and to use the transformed series throughout

the interval 0 < ¢ < 1.

By applying the Goursat transformation (Reference 6)

1 1Tz 1 1 1-Y1-z
F (a' ﬁ. ‘1+,B+§ ) z) = <'——2—> F<2a, a-—,8+7, Q,+[)’+'§ y = —1+m>

to Equation 193, we obtain

2 <1 1 1—1’E>'

= __ 6 -
wig) 3 1+72 F (194)

=, = 1,
' % 1+ V2

The hypergeometric series which appears in the last equation is an alternating series and its conver-
gence can be sped up considerably by applying the Euler summability process.

The general formula of the Euler summability process as applied to the series ayta,*a,tag+te- -
can be written in the form (Reference 10):

[+ N m m

- . 1 (p
S a3 e 2k (j)] (195)
k=0 k=0 ; P=)

i=1

For the hypergeometric series

U (e, k) (8, k) )
Fla, B, 7, x) = (?' k) (y, k) X o (m, k} = mm+1) + + « (m+k-1) ,
k=0

the formula (Equation 195) takes the form:

N m m
i (a, k) (8, k) , (a, N+i) (B, N+ i) . 1 (p
Fla, B, 7, x) = Z (1, k) (y, k) x* * lim (1, N+ ) (y, N+ j) X" Z et (5) ]
)

k=0 i=1 P=j

40



Here, we have o« = 1/6, 8= 1/6 and y = 1. A high degree of approximation is already obtained by
setting N = 3and m = 19. The final result is:

. _ _< 2 1/6
wy4e, = W o= . 7’?) X

X ( +2.3870942
- 0.0663082 w

+0.0225632 w?
-0.0117691 w?
+0.0073743 w*
-0.0051060 w®
+0.0037250 w¢
- 0.0027325 w’
+0.0019070 w®
-0.0011936 w?
+0,0006337 wi®
-0.0002710 w'!
+0.0000884 w2
~ 0.0000205 w'3
+0.0000030 w'4
- 0.0000002 wi5) » (196)

where

S Sl 1
1+ Y& '

and the convergence is fast. The program written by A. J. Smith, Jr. of the Theoretical Division,
Goddard Space Flight Center makes use of Equations 196 and 207.*

A comparison of Goriachev's computations for the minor planet (1) Ceres (done on the basis of
Equations 192 and 193) with the results obtained by Smith using Equation 196 shows a complete agree-
ment between the two methods of computation. The coefficient B (Equation 89)

*This program will be discussed in the following Part 2 of this treatise, by A. J. Smith, Jr.
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which appears in the'expression for the dyadic ¢ (Equation 113) and in the expressions for the dis-
turbing force F, (Equations 114b and 134), can now be put into the final form. We have, taking

Equation 196 into account,

2
B = —f——‘l’(@ . (197)

"8, Y E;

We have still to form a convenient expression for the coefficient A (Equation 88)

_ 16 (3 8
A = Zp\2 g @ n) "

We have
27 g32
é = '
g {198)
27 g 2 1 1
D¢ = D =D<1~—> = =py (199
g2&! J J-z J )
and by considering Equation 153 we deduce
D§ = 4 ﬁal/s J-4/3 (J—l)l/z (200)

from the last equation. Eliminating J and J-1in favor of ¢, and g, by means of J = g}?/A and
J-1=27 g32/A , we deduce from Equation 200 that

36 g3
D = g24 FARNR (201)
We also have
3g3
D<g21/4) = , 4/—g2 (202)

and Dw = - 27 (Equation 150a).

Let us now apply the operator D to w“,/ 4g, = (&) Taking Equations 201, 202, and 150a into ac-
count, we deduce that

42




" or

and thus

144¢,y2
A = ———— g (&) - 203
et Ve, (209)
Now by applying the formula
d
4 Fla, B, 7, x) = a—fF(au, B+1, ¥+1, x)

to w(¢) as given by Equation 193 we obtain a value of ¥’ (£) which may be substituted into Equation
203 to yield

Sg; ¥2 13 17
A = —TF<ﬁv—1—'2,1-§>' (204)
g, Y 34,
Taking the equation
; _ J -1 _ 27 g32
s - J - 3

13 17
L e )’EF(l—gvﬁ'Ll—é)' (205)

By applying the Goursat transformation
1
Fla B atb-3. 2)

_ - 1+y1-2z \172¢ 1 1 1-7Y1~z2
= (I_Z) 1/2 <—2—> F (20.“1, 0'_/8+ 7, a+'8—5‘—_]_Tﬁ>
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to the hypergeometric series in the right side of Equation 205, we obtain, finally,

(206)

5 2 V/6 17 7‘64/_5
e et M AR AR o

The Euler summability process can be applied to the hypergeometric series of the last equation. We

have

> F(l L. 2 ) = -3.7991784
s Fle e 2w T o3
/_3 +0.3693646 w

~0.1556119 w?
+0.0889726 w3
- 0.0586828 w*
+0.0419870 w5
- 0.0313364 w5
+0.0233758 w’
- 0.0165247 w8
+0.0104483 w®
- 0.0055933 w1®
+0.0024083 wlt
- 0.0007898 w12
+0.0001837 w!3
- 0.0000268 w14
+0.0000018 w!5 (207)

where, as before, w = (1 —y’?)/(l +yZ ). Equation 207 was used instead of Goriachev's tables in the
actual computations.

EQUATIONS FOR SECULAR VARIATIONS OF ELEMENTS

Let fm's, fm’ T, fm’ Z be the radial, the tangential, and the normal components respectively of
the disturbing force F. We have (Reference 11) for the variation of elliptic elements a,e,7 = w+Q,
L=g+mi,and(
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dmr m’ na y1 = e? . 1 r . 'zidQ,
Jr T . ~ Sacosv + Ta {1 + * - )sinv | + 2sin 5 4t '

dt M+m e 1-e2 a
dL m’ dmr i dQ .
aF - —M+m2narS+<1— Yl—e2)3g+2)/1—e2 Sinz_f?i't—'
di m* na 7 (vt ;
I c WM+ . rcos {v+w) ;
" 7/1'-e2
Lo, da m’ na .
siniGe = Wam Zr sin (v + w)
1 - e?

1 2m
S, < E.,TJ Sdg’
0
1 27w
T, = gj Tdg'
0
1 27
zZ, = ﬁf zdg' -
0

Averaging the equations for the variation of elements with respect to g and g’ and taking the equations

rcosv = acosE - ae ,
rsinv = a¥l - e? sinkE ,
r = a - aecoskE ,
E~esinE = g,

T
dg = 5 dE

into account, we deduce the following equations for secular variations of elliptic elements:

da 2m’ nal 1 27
Fri W—EJ‘ (esosinE+T0 Vl—e2>dE;
0
de _ m'na?® ¥1 -2 1 (27 z . 3 1
dc - M+ m * on S0 )/1~e san+To<—Ee+2cosE—‘2“ec052E dE ;
0
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dt (M+m) e

2
dm m' na? ¥1 - e? 1 i
"o - 8§, (cosE-e)

0

1 r 2 . . i d0 .
+ T, <1+1—e2.Z>V1—e s1nEi|dE+2sxn2-2-aT’

dL 2m’ na? 1 2m r? e dm 7 . o i dO
g T TMFm So—szJr———(eE'Fz 1-e®sin® 5 Fg
0 a 1+71 - e?
di _ __ mna? Lrwz = [(cosE-e¢) Y1 - e? sinEsinw|dE
E - - 2,” 0 - Ccos — e Jcosw - e sSin Sin (I.)J N
(M+m) V1 - e? o
ini 2. m’ na’ 1 J”z “[(cosE~e)sinw + Y1 - e? sinE dE
sin 1 I - - —— " g 0 a cosk~—elsinw - e’ sin COS&J:| .
(M+m) ¥1 ~ &2 0 a

The values of S, T,, Z, are computed analytically by using the formulas developed in the previous
two sections. The integrals with respect toE are computed numerically by giving E a set of particular

values conveniently distributed over the orbit of the disturbed body.

The secular variation of da/dt is zero in this theory and in the process of computation the small-
ness of da/dt will determine the range of validity of the theory and, at the same time, serve as a check
of the accuracy of the computation.

CONCLUSION

The collection of formulas given in Appendix A was programmed for the actual computation of
long range effects in the motion of artificial satellites and minor planets using step by step integra-
tion. Halphen's method can be especially useful when near-resonance conditions arise. In this
case difficulties are caused by the presence of a small divisor of the form iow+i’'w’ +j f)+j'f)'if
the problem is treated analytically.

In the case of an artificial satellite Halphen's method might give information on the long range
effects and the stability of orbit over the interval of approximately 15-20 years. In the case of minor
planets, it can supply information about the long range ("secular')effects in the elements over intervals
of hundreds of thousands of years; the integration step can be taken to be 100-500 years. We assume
that no sharp commensurability between mean motions of the disturbed and disturbing bodies exists.
The secular variations of the elements of the disturbing bodies are also taken into consideration.
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I.

II1.

IV.

Appendix A
COLLECTION OF FORMULAS

Elements of the disturbed planet:

t+ cos w

+sinw

+cos w'

+sinw’

a 7/1 - e? sinE | ;

gg» 8 n, i, w, §, e, b.
Elements of the disturbing planet:
gol‘ al, nl‘ il, wl QI, el' bl,
Q, R, tcos ) -sinQ 0 +1 0 0
Qy Ry = +sin{l +cos( 0 . 0 +cos i -sini
Q, R, 0 0 +1 0 +sini +cos i
—J — —J - —l
Q' R/ tcos ' ~-sin{)’ 0 +1 0 0
Q, Ry' = +sin{)’ +cos ' 0] . 0 +tcosi' -sini’
Q,/ Rz’_J i 0 0 +1_ LO +sini’ +cosi'—
For example, for E = 0° 10° 20° - - -, 350
x FPX’ P’ P/ P, Q, R, a{cosE-e)
y =1 Q 9/ 9 P, Q, R,
z R/ R' R/ P, Q, R, 0
a = xte'a", B8 =y, ¥y T z
k, = a? + 82 + o2 - (a'2+b'2) ‘
k, = a'2b'? -b'2 a2 ~ 5’2 B2 - (a'2+p'2) 42

—~sinw

+cos w

-sinw'

+ cos w’

+1
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yi&)

k3 = al2 bl2 72
4
g, — F (k12 "3k2)
= 4 3
gs = 27 (k2 -9k, k, + 27k, )
27g;
& = 3
g,
ky, = kg~ k k,,
— - - 2
kg = kl(kl k, 3k3) 2k, .
3 ; €2 144
A 7 g VE W (£)
9g2
Y2
B = ——— w(g)
T8 ¥V &,
. 1-9¢
1 +y¢
2 \1/¢ 144
= X — VY€ ¥' (&)
<1+VE> e
x {+2.3870942
- 0.0663082 w
+0.0225632 w?
~0.0117691 w3
+0.0073743 w*
~0.0051060 w5
+0.0037250 wb
- 0.0027325 w?
+0.0019070 w8
~0.0011936 w9
+0.0006337 w10
~0.0002710 w1
+0.0000884 w12
- 0.0000205 w13
+0.0000030 w4
- 0.0000002 w1s)

X (- 3.
+0.
~ 0.
+0.
~0.
+0.
- 0.
+ 0.
- 0.
+ 0.
- 0.
+0.
- 0.
+0.
- 0.
+0.

7991784
3693646

1556119
0889726
0586828
0419870
0313364
0233758
0165247
0104483
0055933
0024083
0007898
0001837
0000268
0000018

~ ( 2 7/6 )
) 1+ﬂ9 x

w
w2
w3
w4t
wd
wb
w?
w8

w?

wlo
wll
wi2
Wi
wld

wis)



k (a2—a'2) + k +—g— )

4 5 a'?
, 3 82Ky
ky (B2-b2) ks * 7 bz

3
k, ¥? + ke + 58, (az b'2+82 g'2-4'2 blz) ,

VIIL

VIII.

an ~ kyaB,
3

a;,, = kyBy-7g,a? By,
a3 Tk ’)/a"ég2 b'? ya ,
'Bz—blz—%’»—kx

72—%k1.

ay = aB,

ag, - B,

aj T ova,

, A+a, B (i, j = 1, 2, 3)
ji
x 11 12 A x
Fol 5 = 2 Ay 2 Ay y
z 31 32 Ay z
r = al(l—-ecosE)
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- X
& T o
- Y
'Bl T r’
_ z
Y T T
a, P’ P/ P/ R,
‘83 = Qx Qy Qz Ry
’)/3 Rxl Ryl Rz' Rz
% ¥y By By v,
By = ap 73 =7y 9,
Yy T Byay-oa By
IX.
So ap By o™ Fy
To| 5] a By 7, Fy
Z, ag By v, F,
X.
da _ 2m'nal 1 [ .
d - MEra o (eSOsan+To Vl*ez)dE,
0
de _ m’'na? Y1 - &2 1 2 2 . 3 1
da - T M m S, 7/1—6 smE+T0<—Ee+2cosE—'§ec052E) dE ,
0
. 2m
dr _ m' na? V1 - e? 1 1 r\ —— i dD
dat = M+m)e t 2 =8y (cosE-e) +To(1+1_ez "3 J¥1 - e? sinE |dE + 2sin? 5 gF
0
dL 2m’ na? 1 (2 r? e dn i d0
H?:_m—'—ﬁj So'_sz+_'—<eE>+2l—eZSinz'z—_t'
0 a 1+ V1 - e?
di m’ na 1[“2 r[( E-e) 1 - e? sinEsi dE
a’ - __f_' 577_ 0_ Ccos ~ e} cosw— - e sSin Slna):' N
(M+m) Y1 - &2 0 a
i e ""“32 1rwzr(}a)'+1 ? sinE dE
sini gg — 5 0—[ cosE-e) sinw - e? sin cosw] .
(M+m) Y1 - e? 0 a
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